Big Tech Has a Troubling Stranglehold on Artificial Intelligence

When OpenAI’s Sam Altman spoke to U.S. senators in May, he made a startling admission. He didn’t really want people to use ChatGPT. “We’d love it if they use it less,” he said. The reason? “We don’t have enough GPUs.”

Altman’s admission underscores a troubling dynamic in the growing generative AI business, where the power of incumbent tech firms is becoming more entrenched thanks to the value and scale of their infrastructure. Rather than create a thriving market for innovative new companies, the boom appears to be helping Big Tech consolidate its power.

GPUs — graphics processing units — are special chips that were originally designed to render graphics in video games, and have since become fundamental to the artificial intelligence arms race. They are expensive, and scarce and mostly come from Nvidia Corp., whose market value breached $1 trillion last month because of the surging demand. To build AI models, developers typically buy access to cloud servers from companies like Microsoft Corp. and Amazon.com Inc. — GPUs power those servers.

During a gold rush, sell shovels, goes the saying. It’s no surprise that today’s AI infrastructure providers are cashing in. But there’s a big difference between now and the mid-19th century when the winners of the California Gold Rush were upstarts such as Levi Strauss with his durable miners’ trousers, or Samuel Brennan, who sold enough pans to make himself a millionaire. Today, and for at least the next year or so, most of the profits from selling AI services will go to the likes of Microsoft, Amazon, and Nvidia, companies that have dominated the tech space for years already.

Part of the reason is that while the costs of cloud services and chips are going up, the price of accessing AI models is coming down. In September 2022, OpenAI lowered the cost of accessing GPT-3 by a third. Six months later, it made access 10 times cheaper. And in June OpenAI slashed the fee for its embeddings model — which converts words into numbers to help large language models process their context — by 75%. Sam Altman has said the cost of intelligence is “on a path towards near-zero.”

Meanwhile, the price of building AI models is rising because purchasing a GPU today is like trying to buy toilet paper during the Covid-19 pandemic. Nvidia’s A100 and H100 chips are the gold standard for machine-learning computations, but the price of H100s has climbed to $40,000 or more from less than $35,000 just a few months ago, and a global shortage means Nvidia can’t make the chips fast enough. Many AI startups have found themselves waiting in line behind bigger customers like Microsoft and Oracle to buy these much-needed microprocessors. One Silicon Valley-based startup founder with links to Nvidia told me that even OpenAI was waiting on H100 chips that it won’t receive until spring 2024. An OpenAI spokeswoman said the company doesn’t release that information, but Altman himself has complained about his struggle to get chips.